1,819 research outputs found

    Journal Staff

    Get PDF
    A time-dependent coordinate transformation of a constant coeffcient hyperbolic equation which results in a variable coeffcient problem is considered. By using the energy method, we derive well-posed boundary conditions for the continuous problem. It is shown that the number of boundary conditions depend on the coordinate transformation. By using Summation-by-Parts (SBP) operators for the space discretization and weak boundary conditions, an energy stable finite dieffrence scheme is obtained. We also show how to construct a time-dependent penalty formulation that automatically imposes the right number of boundary conditions. Numerical calculations corroborate the stability and accuracy of the approximations

    Paths to higher office: evidence from the Swedish Civil Service

    Get PDF
    The paper analyzes the relationship between career path characteristics of civil servants and their career success. Following a description of the institutional setting and some qualitative evidence on typical paths to the top, we use data that follows the careers of all Swedish civil servants for up to 24 years to document a clear link between early mobility and later success. Controlling for a wide range of other factors, incidents of inter-organizational mobility within the administration, but also interchanges between the administrative and other sectors are positively associated with becoming a senior government ocial. We also show that the positive association between mobility and future success is smaller for more educated workers, which is consistent with signalling effects driving the link between mobility and career success.public sector employment; job mobility; internal labour markets; signalling; promotions; Swedish civil service

    Microscopic Theory for Coupled Atomistic Magnetization and Lattice Dynamics

    Get PDF
    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known inter-atomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double anti-ferromagnetic materials, as well as, charge density waves induced by a non-uniform spin structure are given. In the final parts, a set of coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and damped driven mechanical oscillator for the ...Comment: 22 pages, including 7 pages of Appendix and references, 6 figure

    Atomistic spin dynamics of the CuMn spin glass alloy

    Full text link
    We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical spin glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the system to the low temperature phase. The system is modeled by a Heisenberg Hamiltonian where the Heisenberg interaction parameters are calculated by means of first-principles density functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the equations of motion and the system size. For large damping and large system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure

    A Note on Segre Types of Second Order Symmetric Tensors in 5-D Brane-world Cosmology

    Full text link
    Recent developments in string theory suggest that there might exist extra spatial dimensions, which are not small nor compact. The framework of most brane cosmological models is that in which the matter fields are confined on a brane-world embedded in five dimensions (the bulk). Motivated by this we reexamine the classification of the second order symmetric tensors in 5--D, and prove two theorems which collect together some basic results on the algebraic structure of these tensors in 5-dimensional space-times. We also briefly indicate how one can obtain, by induction, the classification of symmetric two-tensors (and the corresponding canonical forms) on n-dimensional spaces from the classification on 4-dimensional spaces. This is important in the context of 11--D supergravity and 10--D superstrings.Comment: 12 pages, to appear in Mod. Phys. Lett. A (2003) in the present for

    The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    Full text link
    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Asymptotically cylindrical 7-manifolds of holonomy G_2 with applications to compact irreducible G_2-manifolds

    Full text link
    We construct examples of exponentially asymptotically cylindrical Riemannian 7-manifolds with holonomy group equal to G_2. To our knowledge, these are the first such examples. We also obtain exponentially asymptotically cylindrical coassociative calibrated submanifolds. Finally, we apply our results to show that one of the compact G_2-manifolds constructed by Joyce by desingularisation of a flat orbifold T^7/\Gamma can be deformed to one of the compact G_2-manifolds obtainable as a generalized connected sum of two exponentially asymptotically cylindrical SU(3)-manifolds via the method given by the first author (math.DG/0012189).Comment: 36 pages; v2: corrected trivial typos; v3: some arguments corrected and improved; v4: a number of improvements on presentation, paritularly in sections 4 and 6, including an added picture

    Warped product approach to universe with non-smooth scale factor

    Full text link
    In the framework of Lorentzian warped products, we study the Friedmann-Robertson-Walker cosmological model to investigate non-smooth curvatures associated with multiple discontinuities involved in the evolution of the universe. In particular we analyze non-smooth features of the spatially flat Friedmann-Robertson-Walker universe by introducing double discontinuities occurred at the radiation-matter and matter-lambda phase transitions in astrophysical phenomenology.Comment: 10 page

    Infinitely many new families of complete cohomogeneity one Gâ‚‚-manifolds: Gâ‚‚ analogues of the Taub-NUT and Eguchi-Hanson spaces

    Get PDF
    We construct infinitely many new 1-parameter families of simply connected complete noncompact G_2-manifolds with controlled geometry at infinity. The generic member of each family has so-called asymptotically locally conical (ALC) geometry. However, the nature of the asymptotic geometry changes at two special parameter values: at one special value we obtain a unique member of each family with asymptotically conical (AC) geometry; on approach to the other special parameter value the family of metrics collapses to an AC Calabi-Yau 3-fold. Our infinitely many new diffeomorphism types of AC G_2-manifolds are particularly noteworthy: previously the three examples constructed by Bryant and Salamon in 1989 furnished the only known simply connected AC G_2-manifolds. We also construct a closely related conically singular G_2 holonomy space: away from a single isolated conical singularity, where the geometry becomes asymptotic to the G_2-cone over the standard nearly Kaehler structure on the product of a pair of 3-spheres, the metric is smooth and it has ALC geometry at infinity. We argue that this conically singular ALC G_2-space is the natural G_2 analogue of the Taub-NUT metric in 4-dimensional hyperKaehler geometry and that our new AC G_2-metrics are all analogues of the Eguchi-Hanson metric, the simplest ALE hyperKaehler manifold. Like the Taub-NUT and Eguchi-Hanson metrics, all our examples are cohomogeneity one, i.e. they admit an isometric Lie group action whose generic orbit has codimension one
    • …
    corecore